
Events in Flux: Software Architecture and Rhetorical 
Subtraction 

Andrew	Pilsch	

My goal today is two-fold: mainly, I’m going to talk about 

Facebook’s software architecture as a model for programmatic 

detractio; however, I am interested in this question, which I’ll 

talk about later, because I think what Kevin Brock has called 

“rhetorical code studies” has an important, maybe even 

paramount, place in the tools of a digital rhetoric. To go back to 

the ancients for a second, as we all probably know, education in 

grammar was the foundation upon which a facility for rhetoric 

was built. In this example, we find a primary or more 

foundational (if we can use a hierarchical spatial metaphor I’m 

deeply suspicious of) discourse of bare language as being a 

precursor to the more complex, nuanced, and gymnastic work of 

rhetoric. I think we can suggest that grammar, for the ancients, 



SLOW DOWN 

SLOW DOWN 

2 

was training in a facility with language and rhetoric was the 

facility in artfully deviating from or manipulating those 

conventions to produce eloquence. 

I want to ask after Facebook’s Flux architecture today 

because I want to start mapping the equivalent to grammar for a 

digital rhetoric. If we, as Doug Eyman argues, can map from 

classical rhetorical figures and tropes into the digital domain, 

this implies, in my grammar-into-rhetoric history of rhetorical 

training, that there is some kind of artful deviation happening in 

the production of digital, argumentative eloquence. So, if we 

want to follow out this analog-to-digital map I’m making, there 

would imply that there is some kind of baseline or conventional 

digital ground that is being refigured by the tropes and figures of 

digital rhetoric. While you could probably be correct in just 

saying “Andrew it’s still just language,” and we probably 

wouldn’t be wrong (and I could just sit down), I want to ask if 



SLOW DOWN 

SLOW DOWN 

3 

things like the base materiality of computation: protocols, 

languages, and, today, architectures don’t also come to 

constitute the baseline equivalent to a digital grammar from 

which a digital rhetoric then deviates in order to produce the 

desire-called-persuasion. 

So, if I’m right, things like TCP/IP, the x86 computational 

architecture, or the JavaScript programming language (just to 

pick a few of my favorites) might play important parts in 

framing digital rhetoric and that we as digital rhetoricians 

should be paying attention to the communicative effects inherent 

in these really dull, often obscure technical systems. I think such 

an approach is especially relevant, as I discuss today, to the 

emerging conversation around “platform rhetorics.” 

A platform is a software architecture (or probably more 

accurately a software ecology) that enables the building of other 

services. Facebook, Amazon’s AWS Cloud Computing, 



SLOW DOWN 

SLOW DOWN 

4 

Google’s wide array of services, and Twitter are all examples of 

platforms. In Platform Capitalism, Nick Srnicek defines 

platforms as “digital infrastructures that enable two or more 

groups to interact” and through their leveraging of network 

effects constitute “an extractive apparatus for data,” akin to 

economic entities in capitalism like futures markets that do not 

produce commodities but instead extract profit from existing 

flows (Srnicek 43–48). 

Rhetoric happens on platforms, no doubt; these interactions 

are often discursive (though many platforms such as those used 

by Monsanto and GE have little to do with social media) but 

they are also, importantly for Srnicek, a key investment in the 

formation of economic and political power, as we know all to 

well in 2018. Slide While I talk through my approach to 

platform rhetorics, I want to leave this quote from Doug Eyman 



SLOW DOWN 

SLOW DOWN 

5 

up, to ask us to think about what is digital in the digital rhetoric 

of platforms and what is analog: 

While rhetoric provides the primary theory and methods 
for the field of digital rhetoric, the objects of study must 
be digital (electronic) compositions rather than speeches 
or print texts. This is not to say that scholars of digital 
rhetoric may not make connections between analog and 
digital objects or focus on the cultural and socio-historical 
circumstances that lead to, influence, or are imbricated 
with the construction of digital texts, but that the primary 
boundary condition for the field is the distinction between 
analog and digital forms of communication. (n.p.) 

In the introduction to their recent special issue on platform 

rhetorics, Dustin Edwards and Bridget Gelms declare the focus 

of the issue on “new rhetorical contexts we currently face on 

platforms” and the contributions generally focus on what rhetors 

do on platforms and how platforms are used by these rhetors to 

persuade. And that’s all well and good, but aren’t we, at least a 

bit, putting the cart before the horse when we do that? “Behold, 

rhetoric,” we say, pulling a dust cover off a computer. But as 



SLOW DOWN 

SLOW DOWN 

6 

Nietzsche, who I hope y’all get I’m referencing here reminds us, 

“If someone hides something behind a bush, looks for it in the 

same place and then finds it there, his seeking and finding is 

nothing much to boast about” (Nietzsche, pg. 147). 

I don’t want to sound like I’m knocking the work done so 

far on platform rhetorics. Instead, what I’m trying to suggest is 

that if our analysis of platform rhetorics starts from the 

assumption of rhetorical users and precedes toward the platform, 

I worry that we miss most of the story about what makes these 

things novel. Humans have rhetoriced for a while now, but 

platforms are, as Edwards and Gelms make clear, totally novel 

concept. Shouldn’t we start with the novel parts and, instead, 

bracket the humans for a while? (Btw, I’ll be selling “shouldn’t 

we bracket the humans for a while?” T-shirts after this panel). 

Toward that end, I’m going to use the rest of my time to 

discuss the rhetoricity of Facebook by starting from its code 



SLOW DOWN 

SLOW DOWN 

7 

architecture, which is called Flux, and building on that. Maybe 

by the end we’ll get to some actual humans sharing actual doggo 

videos, but I make no promises. 

So, as you may or may not be aware, software is formed, 

shaped, and structured by an analogy to architecture: thus, like 

architecture, software can be said to be composed of certain 

functional patterns and part of designing software (to say 

nothing of making it) is organizing the components of a larger 

project according to patterns that work (and avoiding the 

dreaded “anti-pattern”). Slide The early work on this was done 

in the classic software engineering text, Design Patterns: 

Elements of Reusable Object-Oriented Software by Erich 

Gamma, John Vlissides, Ralph Johnson, and Richard Helm, in 

case you’re interested. This work was incredibly important for 

managing how the era of object-oriented programming was 

inaugurated (think languages like Java or even Ruby for 



SLOW DOWN 

SLOW DOWN 

8 

examples of OOP). This is because in OOP, software is 

composed of a series of objects that interact in limited ways but 

mostly keep to themselves. These interactions can be structured 

in a variety of ways; Design Patterns sought to formalize the 

good ones. 

Slide In front-end web programming (which used 

JavaScript’s limited OOP support quite heavily in the early 

2000s), one of the major design patterns is called pub-sub (for 

publication and subscription). In pub-sub, objects can both be 

message publishers and message subscribes. As a publisher, an 

object would, analogously, be shouting “Here is a message” 

from a window. As a subscriber, an object would be, again being 

analogous here, listening for a particular kind of shouting (say 

someone shouting the price per barrel of oil or shouting every 

time a user logs into a system). 



SLOW DOWN 

SLOW DOWN 

9 

Pub-sub is great. It’s super easy, JavaScript has awesome 

support for event publication and subscription, and everything 

was great for a while. Then big data happened. 

slideIn software projects that approach the complexity of 

an organism’s genome (think Facebook or Gmail) and are 

worked on by thousands of different programmers, pub-sub can 

quickly become a nightmare. What happens if I tell one object to 

turn a lightbulb off every time a user logs in slide and a 

programmer in Islamabad tells another object to turn the same 

lightbulb on every time a user logs in? If a user logs in, the state 

of the lightbulb is no longer deterministic and is instead left to 

chance: which subscriber acted first and which acted second? 

slide 

These sorts of race conditions (where two objects race to do 

the same thing at the same time) was a huge problem 

particularly at Facebook (and apparently is why, if you can 



SLOW DOWN 

SLOW DOWN 

10 

remember back a decade or so, Facebook got really broken 

around the time they rolled out chat. Apparently their chat code 

was wreaking all kinds of havoc on the pub-sub architecture of 

the main client). To solve the increasing number of bugs 

proliferating around race conditions, Facebook developed a new 

design pattern they call slide Flux. 

Flux is an “application architecture … for building client-

side web applications” (Flux, n.p.). It works through “a 

unidirectional data flow” (Flux, n.p.). Unlike pub-sub where 

everyone is both a publisher and a subscriber, Flux rigorously 

controls who can send messages and, most importantly, where 

the results of these messages are processed and stored. slides 

Flux consists of action creators, a message dispatcher, and a 

central data store. An action is a signal to do something, just like 

in pub-sub. Many components can publish actions, but their only 

subscriber is the Dispatcher. Additionally, the Dispatcher and 



SLOW DOWN 

SLOW DOWN 

11 

the Store have an exclusive pub-sub relationship. After the Store 

has updated, any components that depend on state changes 

receive updates from their subscriptions to the store. Flux does 

two things: 1) it centralizes pub-sub and, most importantly, 2) it 

defines the only direction in which messages flow in the system: 

from user events, to actions, to the dispatcher, to the store, and 

back to views where they are displayed to the user. This is why 

Flux is called “unidirectional” in its documentation. 

[slide]So, with the lightbulb example earlier (where there 

were two objects both changing a lightbulb), in Flux, the 

example would be much more complicated. The program would 

be initialized with a global state that tracks lightbulb status (“on” 

or “off”) and a reducer that, whenever a login action is received, 

sets this state to its opposite (“on” to “off” or “off” to “on”). 

Now, the object that actually controls the bulb will subscribe to 



SLOW DOWN 

SLOW DOWN 

12 

this global state and, when the state changes, this controller 

changes the lightbulb accordingly. 

This has the effect of making application state a global, 

shared resource, rather than the properties of individual objects. 

Moreover, it makes it much clearer what is happening when an 

application is running. Since the lightbulb’s state is managed in 

one place (globally), there is no possibility of two objects both 

managing the same bulb, unaware of one another, as the bulb’s 

state is only tracked in one place. 

However, it also makes turning a lightbulb on and off really 

complicated. All this complexity is warranted, the creators of 

Flux argue, because of the related complexity of application 

platforms on the scale of something like Facebook. Flux was 

created to address the fact that within Facebook’s massive 

software development hierarchy, teams were inadvertently 

effecting one another’s code through the creation of race 



SLOW DOWN 

SLOW DOWN 

13 

conditions like the one I described earlier. As Facebook 

transitioned from a place to sort out which girls at Harvard were 

hot and became an application platform, their developers 

increasingly realized that full freedom of application design was 

a problem. 

So, what does this have to do with rhetoric? 

As I suggested, I think it’s important to think about 

platforms less as places where rhetoric happens and more as 

infrastructures that enable and disable certain kinds of rhetoric. 

As an earlier example of what I mean by this distinction, we all 

know that many rhetorical devices were worked out in the 

Athenian law courts. Thus, we could say that these law courts 

were similarly spaces where rhetoric happens (“behold, 

rhetoric”), but we would be missing the more important point: 

spaces condition certain rhetorics to happen within them (which 

we’ve known since at least Roxanne Mountford’s “On Gender 



SLOW DOWN 

SLOW DOWN 

14 

and Rhetorical Space” (Mountford)). In the law courts, [slide] 

they used a water clock called a clepsydra (literally a “water 

thief”) to keep time. It regulated the length of speeches by 

causing a fixed amount of water (that varied depending on the 

type of case being tried) to flow out in a fixed amount of time. 

Moreover, as Suzanne Young traces in “An Athenian 

Clepsydra,” literally everyone who was anyone in ancient 

rhetoric at one point or another commented on time flowing like 

water and began to use the figure of the clepsydra to structure 

their arguments (Young). 

What I want to show by bringing a ceramic water clock to a 

discussion of Facebook is that rhetorical spaces are actually 

rhetorical infrastructures that don’t just contain rhetorical speech 

but structure them in an active way. slide In her famous essay 

inaugurating infrastructure studies, Susan Leigh Star writes that 

infrastructure does “the invisible work of creating a unity of 



SLOW DOWN 

SLOW DOWN 

15 

action in the face of a multiplicity of selves” and works through 

including and excluding, creating those who count and those 

who don’t (Star 29). In looking at Facebook through the lens of 

its code and the architecture that code builds, I want to argue 

that rhetorical platform studies is at a key moment to understand 

how assumptions about what are “natural” features of discourse 

are, instead, the products of human technological choices that 

are now taken for granted. 

slide I am also interested in thinking about Flux as a form 

of detractio, the rhetorical operation of subtraction. One of the 

quadripartita ratio—along with addition, permutation, and 

transposition—it’s “purpose”, as Erasmus writes in De Copia, 

“is to enable you so to include the essentials in the fewest 

possible words that nothing is lacking” (???, I.vi). While it’s 

probably ironic that there is much more said about addition in 

the canon of rhetorical theory, especially in De Copia (“your 



SLOW DOWN 

SLOW DOWN 

16 

letter pleased me greatly”), subtraction is, I argue, extremely 

important in a digital age. 

slide As Shawna Ross has excavated, detractio is the form 

of online communication solicited by social media platforms 

such as Facebook: these platforms prompt “forms of verbal 

compression that are dense, allusive, and lossless, self-contained 

programs that can output large quantities of information by 

referring to a tiny percentage of the original data” (Ross 26). We 

write in small, dense bursts which speak to a “relationship 

between the manifest digital enunciations of social media and 

the larger context to which outsiders are typically not privy,” but 

why I look at Flux is because I want to ask if this is a natural 

product of social media platforms or if it could somehow be 

seen in the code itself (Ross 26). 

Baking detractio into the software itself is an important 

turning point in the development of large-scale web 



SLOW DOWN 

SLOW DOWN 

17 

applications. I cannot stress enough that Flux is a real pain in the 

ass to learn to code. The structure of the application is overkill 

for simple projects; however, I first taught myself Flux when a 

project I was working on using pub-sub manifested one of those 

indescribable and unpredictable race conditions as it grew in 

complexity. Flux gives order but it gives it at the price of 

convenience. At the same time, and this where I first got 

interested in this project, as I conditioned my programming to 

Flux’s structures, I began to think in terms of Flux, like in my 

analog life. 

slide So, Flux was devised as a particular programmatic 

detractio to solve the problem of application complexity 

Facebook was facing as its app went huge in scale. However, 

Flux importantly, I argue, shaped the discourse on that platform 

(or was shaped by it; I’m not sure). As I mentioned earlier, Flux 

is a feed-forward architecture: messages flow in one direction 



SLOW DOWN 

SLOW DOWN 

18 

only; there is no means for reflection, commentary, crosstalk, or 

feedback. 

As we know, it’s hard to have a discussion on Facebook; 

we usually attribute this to political polarization, the need to 

score points through hot takes, or the reduction of complex ideas 

to memes. However, what if this discussion is attributable to the 

architecture of the code itself: messages only go one direction in 

Flux; messages only go in one direction on Facebook? 

slide I am interested in this question for two reasons. In the 

essay I quoted earlier, Susan Leigh Star describes coming to 

consciousness regarding infrastructure and power through the 

experience of being allergic to onions in a McDonalds. As 

someone who didn’t count according to the logics of 

standardization and recognized deviations-from-standard in that 

company’s logic, she found she could not get them to serve her a 



SLOW DOWN 

SLOW DOWN 

19 

hamburger without onions (it was easier to just pick them off). 

From this, she writes: 

The power of feminist analysis is to move from the 
experience of being a non-user, an outcast or a castaway, 
to the analysis of the fact of McDonald’s (and by 
extension, many other technologies)- and implicitly to the 
fact that ‘it might have been otherwise,’ - there is nothing 
necessary or inevitable about the presence of such 
franchises. We can bring a stranger’s eye to such 
experiences. (Star 38) 

This question of “might it have been otherwise” (which is also 

the question asked by reification, btw) is central to the 

exploration of the discourse standards Facebook encodes in its 

software, at the level of the software itself. 

Additionally, I am working on a larger project about the 

rise of functional programming techniques (of which Flux is 

part) and the culture of risk management that shapes social 

media and digital culture generally. Flux is part of a move to use 

more heavily architected and mathematically provable software 



SLOW DOWN 

SLOW DOWN 

20 

development techniques as a way of hedging against chaos, but I 

worry that these software tactics are bleeding into the culture 

circulated by these software artifacts. For instance, as I have 

been arguing in this paper, Flux is a unitary direction message 

architecture and it creates a rhetorical space in which everyone 

is arguing but no one is persuading, a space without the 

possibility of reflection. 

My larger book project is entitled Immutability, which 

takes its name from a different software feature Facebook uses 

extensively (in which data once set, can never be changed). 

Immutability, etymologically, refers to the inability to change; 

however, in Roman times, it also specifically referred to the 

inability to be persuaded by discourse. In other words, I want to 

trace out how, in fear of software bugs, these social media 

platforms are building systems that dismantle and reassemble in 

strange, new ways the basic building blocks of rhetoric itself. 



SLOW DOWN 

SLOW DOWN 

21 

slide As Susan Leigh Star argued, “When standards change, it is 

easier to see the invisible work and the invisible memberships 

that have anchored them in place” (Star 44). We are at a moment 

where the infrastructure of rhetoric is profoundly changing but 

without being attuned to this infrastructure, we risk missing the 

story it is telling us. 

Thanks 

Mountford, Roxanne. “On Gender and Rhetorical Space.” Rhetoric Society Quarterly, vol. 31, 
no. 1, 2001, pp. 41–71, doi:10.1080/02773940109391194. 

Nietzsche, Friedrich. “On Truth and Lying in a Non-Moral Sense.” The Birth of Tragedy and 
Other Writings, edited by Raymond Geuss and Roland Speirs, translated by Roland 
Speirs, Cambridge UP, 1999, pp. 139–153. 

Ross, Shawna. “Hashtags, Algorithmic Compression, and Henry James’s Late Style.” The Henry 
James Review, vol. 36, no. 1, Feb. 2015, pp. 24–44, doi:10.1353/hjr.2015.0005. 

Srnicek, Nick. Platform Capitalism. Polity, 2016. 

Star, Susan Leigh. “Power, Technology, and the Phenomenology of Conventions: On Being 
Allergic to Onions.” Boundary Objects and Beyond: Working with Leigh Star, edited by 
Geoffrey C. Bowker et al., MIT UP, 2016, pp. 263–289. 

Young, Suzanne. “An Athenian Clepsydra.” Hesperia: The Journal of the American School of 
Classical Studies at Athens, vol. 8, no. 3, 1939, pp. 274–284. 


