
Composition not Inheritance: Imagining a Functional 
Digital Humanities 

Andrew	Pilsch	

Today, I want to talk about software architecture in some detail 

and how such a fine-grained consideration of industrial 

programming practices can suggest new, interesting, and I 

would add important directions for thinking about how we do 

our business in the digital humanities. As background, I am 

interested in this question because my current book project—a 

media archeology of the software bug—is seeking to raise 

awareness of and to question how much programming work in 

DH reproduces, intentionally or not, the power structures that 

are encoded by the programming practices we adopt from 

industry. 

Slide This move is inspired by Mark Sample’s intervention 

into the debate about DH and coding, where he claims that DH 



SLOW DOWN 

SLOW DOWN 

2 

is meant to help spread the pleasures and perils of digital culture 

more evenly through the fields of humanisitic inquiry. However, 

Sample’s model of DH necessitates thinking specifically about 

the practices of software-making we borrow from industry and 

the cultures of power we reproduce as a result. 

Slide To ground this idea, I want to look at the famous 

distinction in computer science between composition and 

inheritance as models for software architecture and DH practice. 

Composition and inheritance are examples of what are called 

“design patterns” in software engineering, especially those 

branches of the field associated with object-oriented 

programming (OOP). Design patterns are repeatable 

organizations for OOP projects whose function are considered 

best practices (design patterns are also juxtaposed in the 

literature with dreaded “anti-patterns,” or models of design that 

introduce inefficiency or ill functioning). In software 



SLOW DOWN 

SLOW DOWN 

3 

engineering, composition is always to be preferred over 

inheritance (even though inheritance is often more widely taught 

in introductory computer science classes because it is more 

easily understood and more easily implemented). In this 

presentation, I will first define what both inheritance and 

composition are, before suggesting that much of DH work is 

focused on the former instead of the latter, and conclude by 

suggesting how and why we might better make composite 

design a part of our thinking about software for humanistic 

inquiry. 

Inheritance 
Slide Inheritance is a model implied by the nature of object-

oriented software. In most OO languages, the type of a data 

object is defined by its membership in a class. Classes are 

categories of data, things like novels or animals or cars. Each 



SLOW DOWN 

SLOW DOWN 

4 

specific data instance is instantiated from its class and inherits 

the class’s interface (so, while books have a number of a pages, 

a particular book might have 245 pages; while animals might 

make a noise, a particular animal makes a honking sound). 

Classes in OOP can also inherit characteristics from more 

abstract classes. That’s what’s going on in this chart here: 

Barnyard Animals offers a makeNoise() function while Barnyard 

Bird offers flapWings() and layEggs(). The specific classes of 

animals (Duck, Chicken, and Donkey) all override their 

inherited makeNoise function to produce their specific sound. 

This pattern is inheritance. It’s tied to the legacy of 

Aristotelean, hierarchical thinking in which everything can be 

classified and ordered; a model of the Universe in which 

everything makes sense and has a place. 

Despite confirming our mental models of the universe, 

inheritance is extremely brittle. Adding or changing methods 



SLOW DOWN 

SLOW DOWN 

5 

anywhere in the chain can produce all kinds of problems for 

other instances or less abstract classes. Moreover, what would 

happen if we suddenly didn’t want to differentiate between birds 

and mammals, but instead wanted to inherit based on number of 

legs (two vs four)? Well, that whole diagram goes out the 

window! 

Composition 
Slide Which brings us to composition. In composition, what 

something is is less important than what it does. 

If the diagram on this slide looks confusing, you’re starting 

to get why composition is often ignored or deemphasized in 

teaching computer science. But let’s try to untangle this. 

Where the inheritance diagram was visually clear, it 

mapped a rigid hierarchy in which categories of things 

(“Barnyard Animals”) were broken into more specific things 



SLOW DOWN 

SLOW DOWN 

6 

(“Barnyard Birds” and “Barnyard Mammals”) before being 

broken into the things themselves. In this diagram, we have two 

categories of objects: things and behaviors. The “Noise Making” 

behavior gives objects that possess it access to noise making 

(and each animal defines that behavior for itself), while 

Chickens and Ducks both get “Egg Laying” and “Wing 

Flapping.” If a natural scientist wanted to come along after the 

fact and declare wing flapping and egg laying to be 

characteristics of “birds,” so be it. We don’t care; because we 

are thinking compositionally, we are only interested in defining 

behaviors and adding them to the various aspects of our 

program. 

Composition, besides being the preferred and most widely 

recommended approach to problem solving in a number of 

computational domains, focuses on behavior instead of 

categorization and, therefore, focuses on building or reusing 



SLOW DOWN 

SLOW DOWN 

7 

smart, powerful and, most importantly, focused tools for a 

particular job. 

Composing DH 
So why this discussion of computer science approaches to 

design? Thinking through this distinction transforms a key 

debate in DH on tool usage. In Design Patterns—the 1994 work 

that inaugurated the topic—, Slideinheritance is described as 

“white-box reuse” while Slide composition is described as 

“black-box reuse” (Gamma et al. 19). Remember that, here, 

composition, black-boxing, is strongly recommended. Such a 

recommendation is perhaps puzzling, given the tradition of 

denouncing black boxes in DH. Slide Joanna Drucker, for 

instance, has written of the “epistemological biases” of data 

visualization tools, in which charts and bar graphs claim to stand 

for reality but instead present intensely mediated visions of the 



SLOW DOWN 

SLOW DOWN 

8 

real (Drucker 1). Inheriting a legacy from STS scholarship, part 

of DH practice has been invested in critiquing and opening black 

boxes. 

So it would seem weird, at least it seemed weird to me, that 

this famous CS book is praising black boxes, which are, I think, 

such a dirty word in DH work. However, the authors of Design 

Patterns use “black box” a bit differently than we usually use it: 

in the white-box reuse of inheritance, “the internals of parent 

classes are often visible to subclasses”; while in the black-box 

reuse of composition, “no internal details of objects are visible.” 

Normally, not knowing how something works is seen as a bad 

thing in DH, so what gives? 

Design Patterns uses “black box” to refer to how other 

objects in the software architecture relate, rather than the author 

of the code to the code, and this is an important distinction. In a 

white-box reuse situation, a piece of code explicitly depends on 



SLOW DOWN 

SLOW DOWN 

9 

the interface it inherits from more abstract code. A black box 

reuse situation, however, produces a piece of software that does 

not depend on any other to be used. This means code is more 

easily reusable between projects. 

Think, for instance, of why the selection of a content-

management system is often so important for a public 

humanities project. Omeka gets you Neatline, but Drupal gets 

better user management (though it’s kind of a nightmare to 

install). Wordpress is easy but not all that useful for doing much. 

Moreover, any plugins you use or write for any of those CMSs, 

are going to be lost if you have to switch. While this example 

probably isn’t inheritance in the strictest sense as it’s used in 

Design Patterns, the lesson is still worth thinking through: when 

you choose a tool ecosystem, you are committed to it’s 

particular interface, you’re bound to what you inherit. 



SLOW DOWN 

SLOW DOWN 

10 

Moreover, a lot of DH practice is shaped by the kind of 

hierarchical thinking that drives inheritance. Library catalogs 

and genre theory are both moments in analog humanities that are 

driven by inheritance and the structure it provides. Similarly, a 

project like TEI strongly inscribes a tight, white-boxed data 

structure and demands users to think strongly about 

categorization in the way we were discussing earlier (is this a 

metaphor or a figure? what really is a poem?). We found a 

software architecture that ostensibly supported what we think we 

do, and we reproduced that model in digital space. However, is 

hierarchical thinking all we do in the humanities? 

To answer my own question, I’m going to potential violate 

some DHSI decorum and talk about [slide] Jacques Derrida, 

specifically the idea of iterability he develops in “Signature, 

Event, Context.” In that essay, Derrida challenges the idea of 

writing as conferring presence (specifically the presence of the 



SLOW DOWN 

SLOW DOWN 

11 

author) by contrasting presence with difference (or differance, 

which both differs and defers differing). In this challenge, he 

constructs reading as iteration and writing as iterable. Each time 

we read, we read a different text, but each time we read, part of 

the text escapes and connects to the text as a whole, an 

aggregate effect. 

In this play of differance Derrida highlights something 

important to how I think about a functional DH. Slide Richard 

Lanham, in “The Electronic Word,” imagines a utopia of 

digitization that also foregrounds play as a textual act. Once 

texts are inside the computer, they become subject to iterations 

Derrida could not have imagined: remixed, mashed up, turned 

into bots, made into pictures, translated into gibberish by 

repeated trips through Google Translate. 

When we get to thinking in terms of inheritance, we forget 

the personal nature of reading: our own individual iterations 



SLOW DOWN 

SLOW DOWN 

12 

versus the stable sense of presence, context, and self-identity 

that Derrida is critiquing. Digital data, as Lanham reminds us, 

can be played with, in powerful ways. It can be taken apart and 

included with other functional components to make new and 

novel composites. I have been teaching students to play with our 

digitized literary archive in this fashion: to use texts and images 

and bits of software to produce new cultural forms and new 

ideas of criticality. Several students have made interactive 

fictions based on viral YouTube videos, while others generate 

fake country lyrics in proper ballad meter. I think this kind of 

experimental iteration, taking extant tools and literary archives 

as the raw material for new cultural forms, is an unexplored 

horizon for DH work, but it calls for a change in the way we 

think about what our software does, namely moving from 

inheritance to composition. 



SLOW DOWN 

SLOW DOWN 

13 

By taking small, well-functioning pieces that all work 

together with minimal coupling, the work of iteration with 

digital texts can continue beyond mere digitization. As more 

archives move online, we need to be thinking more about 

functionalizing these tools through APIs, open data, and 

interconnection. This kind of functionalization involves a 

fundamental acknowledgement that we may not even imagine 

how people might use our data, but we still need to think about 

how best to open that data, with a minimal of interface 

entanglements, so that we can better functionalize our projects 

and imagine a composite digital humanities. 

Drucker, Johanna. “Humanities Approaches to Graphical Display.” Digital Humanities 
Quarterly, vol. 005, no. 1, Mar. 2011. 

Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software. 1 
edition, Addison-Wesley, 1994. 


